Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Am J Cancer Res ; 14(2): 490-506, 2024.
Article En | MEDLINE | ID: mdl-38455417

Prostate cancer (PCa), especially castration-resistant PCa, is a common and fatal disease. Anillin (ANLN) is an actin-binding protein that is involved in various malignancies, including PCa. However, the regulatory mechanism of ANLN in PCa remains unclear. Exploring the role of ANLN in PCa development and discovering novel therapeutic targets are crucial for PCa therapy. In the current work, we discovered that ANLN expression was considerably elevated in PCa tissues and cell lines when compared to nearby noncancerous prostate tissues and normal prostate epithelial cells. ANLN was associated with more advanced T stage, N stage, higher Gleason score, and prostate-specific antigen (PSA) level. In addition, we discovered that overexpression of ANLN promoted PCa cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, we performed RNA-seq to identify the regulatory influence of ANLN on the MAPK signal pathway. Furthermore, a favorable association between ANLN expression and IGF2BP1 expression was identified. The tumor-suppressive impact of ANLN downregulation on PCa cell growth was partially reversed by overexpressing IGF2BP1. Meanwhile, we discovered that ANLN can stabilize the proto-oncogene c-Myc and activate the MAPK signaling pathway through IGF2BP1. These findings indicate that ANLN could be a potential therapeutic target in PCa.

2.
Cancer Lett ; 588: 216743, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38423246

Metastatic progression is the primary cause of mortality in prostate cancer (PCa) patients. Although circular RNAs (circRNAs) have been implicated in cancer progression and metastasis, our current understanding of their role in PCa metastasis remains limited. In this study, we identified that circUBE3A(2,3,4,5), which originated from exons 2, 3, 4 and 5 of the human ubiquitin-protein ligase E3A (UBE3A) gene, was specifically downregulated in PCa tissues and correlated with the Gleason score, bone metastasis, and D'Amico risk classification. Through the in vitro and in vivo experiments, we demonstrated that overexpression of circUBE3A(2,3,4,5) inhibited PCa cell migration, invasion, metastasis, and proliferation. Mechanistically, circUBE3A(2,3,4,5) was found to bind to adenylate-uridylate-rich binding factor 1 (AUF1), promoting the translocation of AUF1 into the nucleus. This led to decreased AUF1 in the cytoplasm, resulting in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) mRNA instability and a subsequent reduction at the protein level. The downregulation of MTHFD2 further inhibited vimentin expression, thereby suppressing PCa cell epithelial-mesenchymal transition. Additionally, two pairs of the short-inverted repeats (TSIRs) in flanking introns were identified to synergistically facilitate the generation of circUBE3A(2,3,4,5) and other circRNAs. In summary, TSIRs-induced circUBE3A(2,3,4,5) acts as a suppressor of PCa metastasis by enhancing AUF1 nuclear translocation, reducing MTHFD2, and subsequently inhibiting vimentin expression. This study characterizes circUBE3A(2,3,4,5) as a functional circRNA and proposes it as a highly promising target for preventing PCa metastasis.


Prostatic Neoplasms , RNA, Circular , Humans , Male , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Neoplasm Grading , Prostatic Neoplasms/pathology , RNA, Circular/genetics , Vimentin/metabolism
3.
Environ Pollut ; 344: 123317, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38185360

River is an important pathway for the biogeochemical cycle of Zn. This study reports Zn concentration and δ66Zn composition for suspended particulate matter (SPM) from Lancang River basin in Southwest China, and explore the impact of natural processes and human activities on Zn cycle. The SPM samples have a much higher average Zn content (162 mg kg-1) than that of the upper crust (67.0 mg kg-1), but it is close to the value of the Pearl River (187 mg kg-1). The enrichment factor (EF) values of Zn in SPM range from 1.08 to 6.88, with an average of 2.15, which does not show significant pollution characteristics. The δ66Zn values in SPM range from -0.67‰ to +0.63‰, with an average of +0.13‰. The δ66Zn values showed positive correlation with Ca/Mg ratios while showed little correlation with Zn contents in SPM. It indicated that anthropogenic sources have limited influence on SPM, and the Zn isotope composition in SPM is more likely to be inherited from the weathered rocks materials and influenced by natural fractionation processes in river water. This result contributes to understanding of the geochemical cycling process of Zn and its environmental effects in water.


Rivers , Water Pollutants, Chemical , Humans , Rivers/chemistry , Particulate Matter/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Isotopes/analysis , Water , China , Zinc/analysis
4.
Environ Res ; 239(Pt 2): 117365, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37838202

The water environment of large reservoirs is fragility due to effects from hydrological regulation of damming and anthropogenic inputs. As a critical path to quantify the natural chemical weathering and assess environmental risks, solute chemistry of river has been widely focused on. However, the complexed hydrological conditions of large reservoir affect the chemical compositions, and the significance of solute vertical geochemistry as an indicator of chemical weathering and water quality health remains explore. Therefore, the Three Gorges Reservoir (TGR) was selected as a typical study area, which is the world's largest hydropower project and subject to frequent water quality problems. Then, the chemical compositions in stratified water were determined. Ca2+ (52.8 ± 4.3 mg/L) and HCO3- (180.9 ± 8.9 mg/L) were the most abundant ions among cations and anions, respectively. Incremental mean concentration of total major ions followed with the increase of riverine depth and flow direction. An improved inversion model was used to quantify the source contribution, which weathering of dolomite (34%) and calcite (38%) contributed the most to total cations, and the influences of agriculture and sewage discharge were limited. Additional contributions of evaporite and pyrite oxidation were found in analysis of deeper water samples, which also results in 2%-67% difference in estimated CO2 release flux using data from different depth, indicating additional information about sulfuric acid driven weathering was contained. Finally, the water quality of the reservoir was assessed for irrigation and non-carcinogenic risks. Results showed the stratified water of TGR can be used as a good water source of irrigation. However, NO3- (5.1 ± 1.1 mg/L) may have a potential non-carcinogenic risk to children, especially in surface water. To sum up, this study provided an indispensable supplement to the water chemistry archives in the TGR basin, serving as theoretical references for environmental management of large reservoirs.


Environmental Monitoring , Water Pollutants, Chemical , Child , Humans , Environmental Monitoring/methods , Water Quality , Rivers/chemistry , Weather , Cations/analysis , Water Pollutants, Chemical/analysis , China
5.
J Hazard Mater ; 458: 131913, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37392646

The development of the economy and society makes heavy metals (HMs) pollution more and more serious. And, pollution source identification is the primary work of environmental pollution control and land planning. Notably, stable isotope technology has a high ability to distinguish pollution sources, and can better reflect the migration behavior and contribution of HMs from diverse sources, which has become a hot research tool for pollution source identification of HMs. Currently, the rapid development of isotope analysis technology provides a relatively reliable reference for pollution tracking. Based on this background, the fractionation mechanism of stable isotopes and the influence of environmental processes on isotope fractionation are reviewed. Furthermore, the processes and requirements for the measurement of metal stable isotope ratios are summarized, and the calibration methods and detection accuracy of sample measurement are evaluated. Besides, the current commonly used binary model and multi-mixed models in the identification of contaminant sources are also concluded. Moreover, the isotopic changes of different metallic elements under natural and anthropogenic conditions are discussed in detail, and the application prospects of multi-isotope coupling in the traceability of environmental geochemistry are evaluated. This work has some guidance for the application of stable isotopes in the source identification of environmental pollution.

6.
Food Chem ; 425: 136537, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37290239

Psathrostachys huashanica (P. huashanica), a wild relative of common wheat, is widely used in wheat variety improvement because of its many beneficial properties. In this study, we carried out preliminary analysis on the grain and flour quality of wheat-P. huashanica addition line 7182-6Ns and its wheat parents 7182, and found that 7182-6Ns had a higher protein content and great dough rheological characteristics and investigated the reasons for the changes. The results indicated that 7182-6Ns contained exogenous gliadin, which changed the gliadin composition and increased the ratio of gliadin in total gluten proteins, rebuilt gluten microstructure and thus optimized dough extensibility. As the addition of 7182-6Ns gliadin gradually increased to wheat flour, the diameter, crispness and spread rate of biscuit increased, the thickness and hardness decreased, and the colour improved. The current research provides a basis for understanding the introduction of exogenic gliadin to improve biscuit wheat varieties.


Flour , Gliadin , Gliadin/chemistry , Bread , Triticum/chemistry , Glutens/chemistry
7.
Mol Ther ; 31(6): 1705-1721, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-35974702

Circular RNAs (circRNAs) are a novel class of endogenous RNAs with a covalently closed loop structure. Many circRNAs have been found to participate in cancer progression. However, the detailed generation process, functions, and related mechanisms of circRNAs in prostate cancer (PCa) remain largely unknown. In the present study, we identified circEXOC6B, a novel suppressor in the metastasis of PCa. Functionally, circEXOC6B, originating from the exocyst complex component 6B (EXOC6B) gene, inhibited migration and invasion of PCa in vitro and in vivo. Mechanistically, by acting as a protein scaffold, circEXOC6B enhanced the binding of human RNA binding motif single strand interacting protein 1 (RBMS1) and human antigen R (HuR) and further increased A-kinase anchoring protein 12 (AKAP12) expression to inhibit PCa metastasis. Unlike previous studies, we found that one pair of short inverted repeats in flanking introns at least partly promoted the circularization of circEXOC6B. Our study presents a novel mechanism for the inhibitory role of circEXOC6B in PCa metastasis and provides new insight into the molecular process of circRNA generation.


Genital Neoplasms, Female , MicroRNAs , Prostatic Neoplasms , Male , Female , Humans , RNA, Circular/genetics , RNA/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Cell Proliferation , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
PLoS Comput Biol ; 18(12): e1010764, 2022 12.
Article En | MEDLINE | ID: mdl-36538561

Dimensionality reduction tools like t-SNE and UMAP are widely used for high-dimensional data analysis. For instance, these tools are applied in biology to describe spiking patterns of neuronal populations or the genetic profiles of different cell types. Here, we show that when data include noise points that are randomly scattered within a high-dimensional space, a "scattering noise problem" occurs in the low-dimensional embedding where noise points overlap with the cluster points. We show that a simple transformation of the original distance matrix by computing a distance between neighbor distances alleviates this problem and identifies the noise points as a separate cluster. We apply this technique to high-dimensional neuronal spike sequences, as well as the representations of natural images by convolutional neural network units, and find an improvement in the constructed low-dimensional embedding. Thus, we present an improved dimensionality reduction technique for high-dimensional data containing noise points.


Algorithms , Neural Networks, Computer , Neurons/physiology
9.
Front Oncol ; 12: 893424, 2022.
Article En | MEDLINE | ID: mdl-35814412

Objective: Post-operative biochemical relapse (BCR) continues to occur in a significant percentage of patients with localized prostate cancer (PCa). Current stratification methods are not adequate to identify high-risk patients. The present study exploits the ability of deep learning (DL) algorithms using the H2O package to combine multi-omics data to resolve this problem. Methods: Five-omics data from 417 PCa patients from The Cancer Genome Atlas (TCGA) were used to construct the DL-based, relapse-sensitive model. Among them, 265 (63.5%) individuals experienced BCR. Five additional independent validation sets were applied to assess its predictive robustness. Bioinformatics analyses of two relapse-associated subgroups were then performed for identification of differentially expressed genes (DEGs), enriched pathway analysis, copy number analysis and immune cell infiltration analysis. Results: The DL-based model, with a significant difference (P = 6e-9) between two subgroups and good concordance index (C-index = 0.767), were proven to be robust by external validation. 1530 DEGs including 678 up- and 852 down-regulated genes were identified in the high-risk subgroup S2 compared with the low-risk subgroup S1. Enrichment analyses found five hallmark gene sets were up-regulated while 13 were down-regulated. Then, we found that DNA damage repair pathways were significantly enriched in the S2 subgroup. CNV analysis showed that 30.18% of genes were significantly up-regulated and gene amplification on chromosomes 7 and 8 was significantly elevated in the S2 subgroup. Moreover, enrichment analysis revealed that some DEGs and pathways were associated with immunity. Three tumor-infiltrating immune cell (TIIC) groups with a higher proportion in the S2 subgroup (p = 1e-05, p = 8.7e-06, p = 0.00014) and one TIIC group with a higher proportion in the S1 subgroup (P = 1.3e-06) were identified. Conclusion: We developed a novel, robust classification for understanding PCa relapse. This study validated the effectiveness of deep learning technique in prognosis prediction, and the method may benefit patients and prevent relapse by improving early detection and advancing early intervention.

10.
Sci Total Environ ; 844: 157245, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-35817097

The weathering and development of laterites can influence trace element cycling in (sub-) tropics. Zinc (Zn) is a ubiquitous trace metal that involves both abiotic and biotic processes in soils. To explore Zn behavior in laterites, Zn cycling in (sub-) tropics, and the environmental impacts, Zn isotope systematics were presented for two laterite profiles from Yunnan province, southwest China. The laterite samples exhibit the δ66Zn of 0.02 ‰-0.56 ‰, indicating a light shift of Zn isotope ratios (Δ66Znlaterite-parent rock = -0.47 ‰-0.07 ‰) relative to bulk parent granite. This observation is attributed to the preferential preservation of light Zn isotopes on the surface of secondary Fe oxides. As a result, laterites are likely to control the instantaneous riverine δ66Zn in (sub-) tropical regions heavier than unweathered rocks. The isotopic signature of different vegetation covered soils show that shrub-covered soils are stronger leached (average τZn = -0.61) and have a smaller Δ66Znlaterite-parent rock (=-0.15 ‰), relative to forest-covered soils (=-0.20 ‰). Due to the strong loss of Zn (average τZn = -0.61 to -0.12) and large amounts of low-bioavailable Zn preserved in oxides, the micronutrient supplies for plant growth are difficult to maintain and need more fertilization. This study is helpful for a better understanding of global Zn cycling and the management of micronutrients in (sub-) tropical soil-plant systems.


Trace Elements , Zinc , China , Isotopes , Oxides , Soil , Zinc/analysis , Zinc Isotopes/analysis
11.
Environ Sci Pollut Res Int ; 29(40): 61397-61411, 2022 Aug.
Article En | MEDLINE | ID: mdl-35441999

Coastal river exports massive terrestrial materials to the adjacent marine environment with information about chemical weathering, providing critical insights on riverine flux and the potential impact on marine ecosystem. In this study, the preliminary data of dissolved strontium (Sr) and 87Sr/86Sr in a typical coastal river in southeastern China were collected along with hydrochemistry and C, N, S, and O isotopes to discriminate the source of terrestrial weathering and the riverine flux. Sr concentrations exhibited a range of 0.084 ~ 1.307 µmol L-1, and 87Sr/86Sr values ranged 0.7089 ~ 0.7164. The total cationic charge (TZ+) ranged 0.2 ~ 11.7 meq L-1 with the predominant Ca2+ which accounted for > 50% of TZ+, while the anions were dominated by HCO3-. The extremely high Na+ and Cl- near the estuary indicated seawater mixing in such a coastal river. δ13C-DIC, δ15N-NO3-, δ18O-NO3-, and δ34S-SO42- of river water ranged - 24.1‰ ~ - 9.2‰, 0.3‰ ~ 22.7‰, - 2.1‰ ~ 21.4‰, and - 9.3‰ ~ 18.0‰, respectively. δ13C enhanced correspondingly to decreased δ34S, confirming the attendance of H2SO4 in carbonate weathering. Most δ18O values exhibited within ± 10‰, indicating the dominant nitrification process. δ15N presented slightly negative relationship with δ13C and no obvious correlation with δ34S, indicating relatively limited impact of denitrification. The depleted δ13C and δ15N may be attributed to carbonate dissolution with nitric acids and the oxidation of organic matters into C and N pools. Quantitative analysis revealed that silicate weathering accounts for 79% of total dissolved Sr, indicating the dominant weathering process. The estimated monthly flux of dissolved Sr to the East China Sea was 138.1 tons, demonstrating an potential impact on seawater Sr isotope evolution. Overall, the investigations of multi-isotopes revealed the enhancement of weathering rates and the consequently depleted CO2 consumption, which further proved the involvement of strong acids (H2SO4 and HNO3). This study provides scientific insight in terrestrial weathering and anthropogenic impact of a typical coastal watershed and may orient the management of environmental issues related to coastal ecosystems.


Environmental Pollutants , Water Pollutants, Chemical , Carbonates/analysis , China , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Isotopes/analysis , Oceans and Seas , Rivers , Strontium/analysis , Water Pollutants, Chemical/analysis
12.
Environ Res ; 208: 112716, 2022 05 15.
Article En | MEDLINE | ID: mdl-35026184

Rivers originated from Tibetan Plateau are of great significance due to their environmental sensibility and fragility. However, the pollution of suspended particulate matter (SPM) in these rivers is rarely reported, in particular, the potentially toxic elements (PTEs) contamination. To clarify the status, sources, behavior, and risks of PTEs in SPM, a full investigation was conducted in dams-influenced Lancangjiang River basin. The findings revealed that the PTEs content (mg kg-1) ranked Mn (766) > V (151.7) > Zn (131.0) > Cr (94.6) > Ni (44.2) > Pb (36.7) > Cu (29.4) > Co (14.6) > Sb (2.6) > Mo (1.6) > Tl (0.78) > Cd (0.48). The multi-index assessment suggested that Sb and Cd were moderately severe to severe enriched PTEs with the enrichment factor values of 10.0 and 8.8 and the geo-accumulation index values of 2.2 and 2.0, respectively, while the rest of PTEs were minor/no enrichment. In contrast, Cr and Ni were major toxic elements in SPM which contributed 25 ± 10%, 24 ± 8% to the total toxic risk index. The high partition coefficients (e.g., 6.1 for Cr) were observed in most PTEs and resulted in the 96.3% of Cr, 85.2% of Zn, 83.6% of Pb, 77.8% of Ni, and 63.2% of Cu transportation in the SPM form. Natural inputs (e.g., soil erosion) are the main source (53.6%∼61.9%) of V, Cr, Mn, Co, Ni, and Tl, while fuel burning contributed 40.9% of Zn, 32.5% of Pb, and 37.3% of Cd. Moreover, 51.2% of Sb was attributed to industrial waste source, while porphyry copper/molybdenum deposits related milltailings were the co-source of Mo (54.4%) and Cu (34.8%). Overall, the PTEs geochemistry of SPM showed the potential in tracing regional environmental change.


Metals, Heavy , Soil Pollutants , China , Environmental Monitoring/methods , Industrial Waste , Metals, Heavy/analysis , Risk Assessment , Rivers/chemistry , Soil/chemistry , Soil Pollutants/analysis , Tibet
13.
Environ Pollut ; 288: 117740, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34265563

The sulfate pollution in water environment gains more and more concerns in recent years. The discharge of domestic, municipal, and industrial wastewaters increases the riverine sulfate concentrations, which may cause local health and ecological problems. To better understand the sources of sulfate, this study collected water samples in a typical agricultural watershed in East Thailand. The source apportionment of sulfide was conducted by using stable isotopes and receptor models. The δ34SSO4 value of river water varied from 1.2‰ to 16.4‰, with a median value of 8.9‰. The hydrochemical data indicated that the chemical compositions of Mun river water were affected by the anthropogenic inputs and natural processes such as halite dissolution, carbonate, and silicate weathering. The positive matrix factorization (PMF) model was not suitable to trace source of riverine sulfate, because the meaning of the extracted factors seems to be vague. Based on the elemental ratio and isotopic composition, the inverse model yielded the relative contribution of sulfide oxidation (approximately 46.5%), anthropogenic input (approximately 41.5%), and gypsum dissolution (approximately 12%) to sulfate in Mun river water. This study indicates that the selection of models for source apportionment should be careful. The large contribution of anthropogenic inputs calls an urgent concern of the Thai government to establish effective management strategies in the Mun River basin.


Environmental Monitoring , Water Pollutants, Chemical , Isotopes , Rivers , Sulfates , Water Pollutants, Chemical/analysis
14.
Polymers (Basel) ; 13(10)2021 May 15.
Article En | MEDLINE | ID: mdl-34063495

Oxygen delignification presents high efficiency but causes damage to cellulose, therefore leading to an undesired loss in pulp strength. The effect of ionic liquid pretreatment of [BMIM][HSO4] and [TEA][HSO4] on oxygen delignification of the eucalyptus kraft pulp was investigated at 10% IL loading and 10% pulp consistency, after which composition analysis, pulp and fiber characterizations, and the mechanism of lignin degradation were carried out. A possible dual effect of enhancing delignification and protecting fibers from oxidation damage occurred simultaneously. The proposed [TEA][HSO4] pretreatment facilitated lignin removal in oxygen delignification and provided fibers with improved DP, fiber length and width, and curl index, resulting in the enhanced physical strength of pulp. Particularly, its folding endurance improved by 110%. An unusual brightness reduction was identified, followed by detailed characterization on the pulps and extracted lignin with FTIR, UV, XPS, and HSQC. It was proposed that [TEA][HSO4] catalyzed the cleavage of ß-O-4 bonds in lignin during the oxygen delignification, with the formation of Hibbert's ketones and quinonoid compounds. The decomposed lignin dissolved and migrated to the fiber surface, where they facilitated the access of the oxidation agent and protected the fiber framework from oxidation damage. Therefore, it was concluded that ionic liquid pretreatment has a dual effect on oxygen delignification.

15.
Sci Total Environ ; 786: 147332, 2021 Sep 10.
Article En | MEDLINE | ID: mdl-33971594

Global carbon cycle is closely related to the earth's energy budget, because CO2 plays an active role in the global climate change. The higher CO2 partial pressure (pCO2) in inland water in comparison with atmosphere, causing a CO2 evasion from water to the air. However, the relationship between CO2 evasion, riverine carbon export, and hydrochemistry in watershed has remained largely unknown. This study collected 84 river water samples in Jiulongjiang River, to further address this subject on a small watershed scale. Water temperature fluctuation, riverine photosynthesis, and acidic matter input could not account for the seasonal variation of pCO2 in Jiulongjiang River. The spatial shifts of pCO2 were derived from the mixing process between headwater and soil influx. The soil influx with high pCO2 compensated the CO2 lost from evasion and caused pCO2 in Jiulongjiang River higher than the atmospheric level. The seasonal variation of pCO2 was caused by the precipitation difference between the wet season and dry season. The addition of rainwater significantly decreased the riverine pCO2 and HCO3- concentration in the wet season. The CO2 evasion rate in Jiulongjiang River was clearly higher than that in most worldwide large rivers. The annual CO2 evasion flux in Jiulongjiang River Basin was estimated about 2.48 × 105 T C/year, which was higher than the riverine total carbon export. The CO2 evasion rate exhibited significantly positive relationship with water surface area, indicating that the global CO2 evasion flux may be roughly estimated based on the observed regression relationship. Overall, our study indicated that it still requires collaborative effects to investigate the carbon dynamics in river water, more estimations of CO2 outgassing flux from river water under different hydrologic and geologic conditions are necessary.

16.
Water Res ; 194: 116932, 2021 Apr 15.
Article En | MEDLINE | ID: mdl-33640754

Rivers transport abundant terrestrial carbon into the ocean, constituting a fundamental channel between terrestrial carbon pools and oceanic carbon pools. The black carbon (BC) derived from biomass and fossil fuel combustion is an important component of the riverine organic carbon flux. A recent study estimated that approximately 17 ~ 37 Tg C of BC was delivered in suspended particle phase by rivers per year. The particulate black carbon (PBC) in river systems has rarely been investigated and its controlling factors have remained largely unknown. The stable isotopic compositions of PBC in Xijiang River during the wet season are reported in this study. We found that the PBC/particulate organic carbon (POC) ratio in Xijiang River was slightly higher than that of other rivers, which may be a result of the mobility difference between POC and PBC, aerosol BC input and riverine biogenic effect. We found that the isotopic compositions of PBC depleted 13C compared with those of POC and dissolved organic carbon (DOC). This divergence may be derived from the fractionation during soil organic matter production and biomass burning or fossil fuel combustion BC particles input with different isotopic compositions. The MixSIAR model indicated that most of the PBC in the study area was derived from fossil fuel combustion (~80%), the contribution of C4 plants burning was limited. Our result highlights that in the watershed without wildfire impact, the aeolian transport and deposition of the particles from fuel oil, coal combustion, and vehicle exhaust could significantly affect the BC flux in rivers.


Environmental Monitoring , Rivers , Bayes Theorem , Carbon/analysis , Coal
17.
Atmos Pollut Res ; 12(3): 136-145, 2021 Mar.
Article En | MEDLINE | ID: mdl-33584105

Lockdowns implemented in response to COVID-19 have caused an unprecedented reduction in global economic and transport activity. In this study, variation in the concentration of health-threatening air pollutants (PM2.5, NO2, and O3) pre- and post-lockdown was investigated at global, continental, and national scales. We analyzed ground-based data from >10,000 monitoring stations in 380 cities across the globe. Global-scale results during lockdown (March to May 2020) showed that concentrations of PM2.5 and NO2 decreased by 16.1% and 45.8%, respectively, compared to the baseline period (2015-2019). However, O3 concentration increased by 5.4%. At the continental scale, concentrations of PM2.5 and NO2 substantially dropped in 2020 across all continents during lockdown compared to the baseline, with a maximum reduction of 20.4% for PM2.5 in East Asia and 42.5% for NO2 in Europe. The maximum reduction in O3 was observed in North America (7.8%), followed by Asia (0.7%), while small increases were found in other continents. At the national scale, PM2.5 and NO2 concentrations decreased significantly during lockdown, but O3 concentration showed varying patterns among countries. We found maximum reductions of 50.8% for PM2.5 in India and 103.5% for NO2 in Spain. The maximum reduction in O3 (22.5%) was found in India. Improvements in air quality were temporary as pollution levels increased in cities since lockdowns were lifted. We posit that these unprecedented changes in air pollutants were mainly attributable to reductions in traffic and industrial activities. Column reductions could also be explained by meteorological variability and a decline in emissions caused by environmental policy regulations. Our results have implications for the continued implementation of strict air quality policies and emission control strategies to improve environmental and human health.

18.
Polymers (Basel) ; 12(7)2020 Jul 18.
Article En | MEDLINE | ID: mdl-32708386

A novel choline-based deep eutectic solvent (DES) with low halogen content-namely choline lactate-lactic acid (CLL)-was synthesized by replacing the chloride anion with lactate anion in choline chloride-lactic acid (CCL). CLL and CCL treatments were conducted at 140 °C for 12 h with hydrogen bond acceptor/hydrogen bond donor =1/10, thereafter composition analysis and characterizations of the lignin extracted by DES treatment (DES lignin) and the solid residue were carried out. The proposed low halogen content DES presented an improved lignin extraction efficiency. The CLL treatment extracted 90.13% of initial lignin from poplar, while CCL extracted 86.02%. In addition, the CLL treatment also provided DES lignin with an improved purity (91.17%), lower molecular weight (Mw/Mn=1805/971 g/mol) and more concentrated distribution (polydispersity index=1.86). The efficient lignin extraction was mainly ascribed to the cleavage of ß-O-4 bonds in lignin macromolecule, especially in the guaiacyl units, thereby breaking them into smaller molecules, facilitating the lignin extraction. The replacement of chloride anion allowed CLL acting as a more efficient DES to interact with lignin macromolecules, thus providing lignin with higher uniformity and suitable molecular weight. The low halogen content DES system proposed in present work could benefit the fractionation of biomass, improve the valorization of lignin compounds and facilitate industrial process in the downstream.

19.
Sci Total Environ ; 724: 138208, 2020 Jul 01.
Article En | MEDLINE | ID: mdl-32247138

The chemical weathering processes become a rising concern in carbon cycling research, because it can increase carbon budgets of lateral transport by rivers and effectively sequestrate atmospheric CO2. Recent studies suggest that the human perturbations can accelerate the chemical weathering, however, the processes of accelerated weathering and its potential environmental effects still remain questions. To examine the mechanism of the human-related accelerated weathering and its influences, the spatial-temporal distributions of the major ions and stable isotope compositions (δ34SSO4) in Jiulongjiang River are measured. The seasonal variations of the riverine solutes results from the hydrologic condition and different mineral dissolution rates of carbonate and silicate minerals. The H2SO4 and HNO3 indeed participate in the mineral dissolution, and increase the riverine C flux. S isotope compositions suggest the riverine H2SO4 is mainly derived from the anthropogenic sewage inputs and oxidation of sulfide, while the statistics and stoichiometry analysis indicating HNO3 are close related to the agricultural activities. On the watershed scale, the areas with high agricultural/urban land use areas (%) have significantly high TDS and DIC values in comparison with that in the areas with high forest covering, indicating the accelerated weathering processes have already been activated by the human perturbations. The assessments of the irrigation water quality suggest that the Jiulongjiang river water is facing the salinity hazard under the accelerated weathering conditions. More attention should be paid to the effect of human perturbations on chemical weathering.

20.
Article En | MEDLINE | ID: mdl-31948052

To identify whether the iron (Fe) mining area in the Jiulongjiang River basin (JRB) has an influence on the mercury in the forest soil, the spatial distribution patterns of mercury's behavior on different controlling factors were analyzed, and a potential ecological risk assessment was done. A total of 107 soil samples were collected from two forest soil profiles, one profile near the Fe mining area and the other far from it. The soil near the mining area had a moderate potential ecological risk with high Fe content rich in the upper layer of soil (<70 cm), whereas soil collected far from the mining area had a low potential ecological risk. These results indicated that the rise of iron content in the soil near the mining area was beneficial to the enrichment of mercury, probably causing damage to the forest ecosystem. Both soil organic carbon (SOC) and Fe content have strong positive correlations with THg content, controlling the mercury behavior in the upper layer (<70 cm) and a lower layer (>70 cm) of soil, respectively. The high Fe content in the upper layer of soil will compete for the adsorption of mercury by SOC, leading to the poor correlation between SOC and THg.


Iron/chemistry , Mercury/chemistry , Organic Chemicals/chemistry , Soil Pollutants/chemistry , Soil/chemistry , China , Ecology , Ecosystem , Environmental Monitoring/methods , Forests , Mercury/analysis , Mining , Rivers , Soil Pollutants/analysis
...